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LETTER TO THE EDITOR 

Distribution of relaxation times neat the gelation threshold 
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Laboratoire Lion Brillouint, CEN Saclay, 91 191 Gif-sur-Yvette Cedex, France 

Received 6 June 1988 

Abstract. We consider the distribution of relaxation times of randomly branched polymers 
in a sol, or of a gel in the reaction bath, close to the gelation threshold. We find that it is 
a slowly decaying power law with a cutoff at large times. This distribution cannot be 
characterised by one single time, but by two different times. Both diverge as one approaches 
the threshold, with different exponents depending on the percolation exponents s and r 
for the conductivity and the superconductivity respectively. These results also apply to 
mixtures of conductors and dielectric materials. 

The viscoelastic properties of branched polymers and gels are of considerable practical 
importance, and have received a very large experimental and theoretical attention 
[ 1-41. Our understanding of these fundamental properties in the vicinity of the gelation 
threshold, however, is rather limited. More specifically, we know that these systems 
are characterised by a large distribution of relaxation times and it is extremely interesting 
to have some information about such a distribution. Indeed the latter allows for the 
calculation of all macroscopic relaxation properties. Linear polymer melts are also 
known to have a large distribution of times, but it has been shown that these are related 
to a single time, namely the reptation time. We would like to know if in the case of 
branched polymers the distribution of times may also be reduced to a single time or 
if it is so large that it may not. As we will see, the latter is valid: in addition to a time 
proportional to the viscosity, a second, longer, characteristic time may be defined. The 
distribution of times is very large and may not be reduced to a single time. An important 
step was the recognition by de Gennes that the elastic modulus of the gel and the 
viscosity of the sol in the reaction bath are directly related to the conductance of a 
random resistor network [SI and a random superconducting network [6,7] respectively. 
Thus the elastic modulus goes to zero as the threshold is approached from above as 

and the viscosity diverges as pc is approached from below as 

77'- (Pc-P)r  P<Pc (2) 
where s and t are the usual percolation superconductivity and conductivity exponents 
respectively, and (p-pc) the distance to the gelation threshold. It is very important 
to realise that both the above relations are the zero-frequency limits, above and below 
the threshold, of a complex modulus. For non-zero frequencies, this modulus d ( w )  
has non-vanishing real and imaginary parts [8]. Conversely, one may also define a 
complex viscosity +j, directly related to the complex modulus: 

G ( u ) =  G'+iug '= iu+j (w)  (3) 

t Laboratoire commun CEA-CNRS. 
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with i =a and w the frequency. In the following, we will focus on the properties 
of the complex viscosity f j ( w ) .  The latter was related [9, 101 to the complex dielectric 
constant P ( w )  of a random mixture of dielectric and metallic materials. Thus the 
present discussion applies also to the distribution of times near the percolation threshold 
of these mixtures. The scaling properties of E ( w )  were considered earlier by Efros 
and Shklovskii [ l l ]  and Clerc et al [12]. Thus we will assume [8] the following form 
for the viscosity: 

i i ( w )  -- (P-P,)-%(i~(p-p,)-"-') (4) 

with j+ an unknown scaling function with known limits both above ( + )  and below 
( - )  the threshold for low and high frequencies [8]. Relation (4) displays a characteristic 
time T, which diverges at the threshold: 

T, - (P - P J S - '  ( 5 )  

which may be interpreted as the longest relaxation time in the system?. 
Because the distribution of molecular weights is wide and may be characterised by 

two diverging masses, one wonders if such is not also the case for the distribution of 
times. Because we know the frequency dependence of the complex viscosity, it is 
possible to determine the distribution of relaxation times of a sol or a gel in the reaction 
bath. Let H ( T )  be this distribution. Then, we have [ I ]  

H ( T )  d r  I, lsiw7 
with T~ a microscopic time. Assuming for the relaxation times distribution a scaling 
form similar to the distribution for the masses 

H ( 7 )  - T-xg* (T (p -pc)y )  (7) 

with g , ( x )  a function defined above (+ )  and below ( - )  the threshold, the exponents 
x and y are determined, using relations (4) and ( 6 ) .  We find x = t / ( s +  t )  and y = s + t 
(for d = 3, this leads to x = 0.75 and y = 2.55), and thus 

g * ( d p  -pJ5+') .  ( 7 0 )  H ( T )  - ? - ' / ( S + ' )  

Let us stress that this form is a direct consequence of relations (4) and ( 6 )  above. It 
is straightforward to evaluate the moments of this distribution. We find 

where the denominator is dominated by its lower bound and does not diverge, 

T, = TH(~) d r (  H(r)  d r ) l  - ( p  -p , ) - ' - '  (9) 

t This is equivalent to the rotation time discussed earlier by Joanny [13] if we accept Straley's conjecture 
[ 141 that s + r = vd. The latter is correct in a Flory approximation. 
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Thus the distribution of times may not be reduced to a single time. There appear 
two diverging times: in addition to the time T, that was considered earlier (see footnotet 
and also [15]), there is a shorter time, T, diverging at the threshold like the viscosity. 
The latter result is a direct consequence of relation (6) in the limit of zero frequency: 
below the threshold, the viscosity of the sol is [ l ]  

7)'= i j ( w  =O) P < P c .  (11) 

Note that in a linear polymer melt, because the modulus is finite, there is only one 
characteristic time, proportional to the viscosity. 

It is tempting to relate the time distribution function and the molecular weight 
distribution. Let P (  N, p - p c )  be the number of polymers with N monomers per unit 
volume. We know that its scaling form [16] 

where d is the dimension of space, and D is the fractal dimension [18] and CT is a 
percolation exponent [ 16,193, exhibits a cutoff mass 

Comparing T,, relation (9), to N,, and generalising to all masses, we assume 

(14) r ( ~ )  - N ( * + + ' ) / D  

where we have used known relations between percolation exponents, and S = s/ v and 
?= t / v  with U the exponent of the connectivity length and D the fractal dimension 
[ 181. Assuming 

(15)  H ( T )  dT= P ( N ,  p - p c )  W (  N )  d N  

where W (  N )  is a weight function and using relations ( 7 a ) ,  (12), (14) and ( 1 9 ,  we find 

(16) w( N )  - N(d+i) /D 

favouring high molecular weights. Again this weighting may be interpreted if we come 
back to equations (6) and (11) 

v f - j 7 y H ( r ) d r .  

Inserting equations ( 7 a )  and (14) in the above equation, we find 

where N, is the second moment of P ( N , p - p , )  as usual [16,19]. Assuming a self- 
similar behaviour, the first term in the integral above may be interpreted as the 
contribution of every molecular weight to the viscosity, 

{ ( N ) -  N"lD. 

+ Finally, Martin and Wilcoxon [17] also found two different times, different from those discussed above, 
in a silica system close to its gelation threshold. Silica, however, does not always exhibit percolation 
properties. Thus our considerations about the viscoelastic behaviour have to be somewhat amended in these 
systems. 
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Relation (17) may then be written as 

77‘ - 5 +( N )  N - ’ + d ’ D  NP(  N, p - p,) d N 

which may be written in the form $-I r7)’(N)lNP(N,P-P,)dN (18’) 

where 

[ v’( N ) ]  - $ ( N ) N - ’ + d ’ D  - 7 7 ’ ( N ) 4 , - ’ ( N )  (19 )  

may be interpreted as the intrinsic viscosity of mass N ( 4 ( N )  being the concentration 
in mass N). Thus the weight W ( N )  is directly related to the composition law for the 
viscosity. We find that the viscosity of the reaction bath is the weight average of the 
intrinsic viscosities of the components, a result already discussed by Marrinan and 
Hermans [20] and Sievers [21]. 

As a conclusion we have shown that close to the gelation threshold there is a very 
large distribution of relaxation times, decaying as a power law and cut off at very large 
times. Such a distribution may not be reduced to a single time, as for linear chains 
in a melt. It is characterised by two different diverging times respectively proportional 
to the viscosity and to the ratio of the viscosity and the elastic modulus. Because of 
this slow decay, we expect singular relaxation behaviours. As an example, we may 
consider for instance the deformation at constant rate of strain y .  Above the threshold, 
the variation with time x of the stress v ( x )  is 

10 

~ ( x )  - ( p  - p , ) ‘ y x  + 9 TH( T)( 1 - d In T. (20) 

a ( x )  - ( p  --p&x+ y x ” ( s + r ) F ( x ( p  -pJScr  

L 
Using relation (7a) for H(T) ,  we find 

(20a 1 
where the function F ( x )  may be calculated using relation (20) when we know the 
distribution H(. r ) .  A more detailed discussion of these relaxation effects will be given 
elsewhere. Trying to relate the distributions of molecular weights and of times leads 
to the law of composition of viscosities: we find that the viscosity of the bath is the 
weight average of the intrinsic viscosities of every mass. 

The author is much indebted to C Allain, A Coniglio, G Jannink and M Ocio for very 
interesting discussions and comments. 
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